The behavior of adaptive bone-remodeling simulation models.
نویسندگان
چکیده
The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to simulate the remodeling process in each element individually is, in fact, an objective function for an optimization process, relative to the external load. Its purpose is to obtain a constant, preset value for the strain energy per unit bone mass, by adapting the density. If an element in the structure cannot achieve that, it either turns to its maximal density (cortical bone) or resorbs completely. It is found that the solution obtained in generally a discontinuous patchwork. For a two-dimensional proximal femur model this patchwork shows a good resemblance with the density distribution of a real proximal femur. It is shown that the discontinuous end configuration is dictated by the nature of the differential equations describing the remodeling process. This process can be considered as a nonlinear dynamical system with many degrees of freedom, which behaves divergent relative to the objective, leading to many possible solutions. The precise solution is dependent on the parameters in the remodeling rule, the load and the initial conditions. The feedback mechanism in the process is self-enhancing, denser bone attracts more strain energy, whereby the bone becomes even more dense. It is suggested that this positive feedback of the attractor state (the strain energy field) creates order in the end configuration. In addition, the process ensures that the discontinuous end configuration is a structure with a relatively low mass, perhaps a minimal-mass structure, although this is no explicit objective in the optimization process. It is hypothesized that trabecular bone is a chaotically ordered structure which can be considered as a fractal with characteristics of optimal mechanical resistance and minimal mass, of which the actual morphology depends on the local (internal) loading characteristics, the sensor-cell density and the degree of mineralization.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملAdaptive scapula bone remodeling computational simulation: Relevance to regenerative medicine
Shoulder arthroplasty success has been attributed to many factors including, bone quality, soft tissue balancing, surgeon experience, and implant design. Improved long-term success is primarily limited by glenoid implant loosening. Prosthesis design examines materials and shape and determines whether the design should withstand a lifetime of use. Finite element (FE) analyses have been extensive...
متن کاملTurbo Expander System Behavior Improvement Using an Adaptive Fuzzy PID Controller
Turbo-expanders are used in industries for cooling, liquefaction and also power generation. An important part of these turbines is the variable angle nozzle causing a nonlinear behavior that is not well recognized among the prime movers of the dispersed generators. In this paper, at first, the turbo expander system is evaluated in details and its nonlinear behavior is investigated. Then, the sy...
متن کاملTrabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models.
A computational simulation method for three-dimensional trabecular surface remodeling was proposed, using voxel finite element models of cancellous bone, and was applied to the experimental data. In the simulation, the trabecular microstructure was modeled based on digital images, and its morphological changes due to surface movement at the trabecular level were directly expressed by removing/a...
متن کاملThree Dimensional Simulation of Adaptive Bone Remodelling in THR Femur
The adaptive bone remodeling phenomenon in the femur before and after prosthetic total hip joint replacement (THR) was investigated using the three dimensional finite element method. A normal hip joint model which composed of the proximal femur and the pelvic bone including femoral head and acetabular was constructed three-dimensionally by our method reported previously. The simulation model wa...
متن کاملMANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios
Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 25 12 شماره
صفحات -
تاریخ انتشار 1992